https://radimrehurek.com/gensim/auto_examples/index.html
Text Summarization
from gensim.summarization import summarize
text = "..."
print(summarize(text))
print(summarize(text, ratio=0.5)) # 占原文的比例,默认是0.2
print(summarize(text, word_count=50)) # 限定摘要的单词数目
获得关键词
from gensim.summarization import keywords
print(keywords(text, ratio=0.01))
FastText
from gensim.models.fasttext import FastText as FT_gensim
from gensim.test.utils import datapath
# Set file names for train and test data
corpus_file = datapath('lee_background.cor')
model = FT_gensim(size=100)
# build the vocabulary
model.build_vocab(corpus_file=corpus_file)
# train the model
model.train(
corpus_file=corpus_file, epochs=model.epochs,
total_examples=model.corpus_count, total_words=model.corpus_total_words
)
print(model)