姜鹏辉的个人博客 GreyNius

Clickhouse性能测试-SSB

2020-12-10

Star Schema Benchmark测试集

简介

Star Schema Benchmark(简称SSB)是基于TPC-H修改,用于评测星型数据库性能的测试标准,原始工具地址位于https://github.com/Kyligence/ssb-kylin

部署

原始SSB为Apach Kylin数据库设计,这里使用https://github.com/vadimtk/ssb-dbgen提供的工具进行测试,此测试中不再是星型查询,而是将star schema转换为flat schema再进行查询

编译ssb-dbgen

$ git clone git@github.com:vadimtk/ssb-dbgen.git
$ cd ssb-dbgen
$ make

生成数据

使用参数-s 10,最后生成6.7G数据,59,986,052条数据

$ ./dbgen -s 10 -T c
$ ./dbgen -s 10 -T l
$ ./dbgen -s 10 -T p
$ ./dbgen -s 10 -T s
$ ./dbgen -s 10 -T d

创建数据表

首先创建用于测试的数据库

CREATE DATABASE ssb;
CREATE TABLE customer
(
        C_CUSTKEY       UInt32,
        C_NAME          String,
        C_ADDRESS       String,
        C_CITY          LowCardinality(String),
        C_NATION        LowCardinality(String),
        C_REGION        LowCardinality(String),
        C_PHONE         String,
        C_MKTSEGMENT    LowCardinality(String)
)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);

CREATE TABLE lineorder
(
    LO_ORDERKEY             UInt32,
    LO_LINENUMBER           UInt8,
    LO_CUSTKEY              UInt32,
    LO_PARTKEY              UInt32,
    LO_SUPPKEY              UInt32,
    LO_ORDERDATE            Date,
    LO_ORDERPRIORITY        LowCardinality(String),
    LO_SHIPPRIORITY         UInt8,
    LO_QUANTITY             UInt8,
    LO_EXTENDEDPRICE        UInt32,
    LO_ORDTOTALPRICE        UInt32,
    LO_DISCOUNT             UInt8,
    LO_REVENUE              UInt32,
    LO_SUPPLYCOST           UInt32,
    LO_TAX                  UInt8,
    LO_COMMITDATE           Date,
    LO_SHIPMODE             LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);

CREATE TABLE part
(
        P_PARTKEY       UInt32,
        P_NAME          String,
        P_MFGR          LowCardinality(String),
        P_CATEGORY      LowCardinality(String),
        P_BRAND         LowCardinality(String),
        P_COLOR         LowCardinality(String),
        P_TYPE          LowCardinality(String),
        P_SIZE          UInt8,
        P_CONTAINER     LowCardinality(String)
)
ENGINE = MergeTree ORDER BY P_PARTKEY;

CREATE TABLE supplier
(
        S_SUPPKEY       UInt32,
        S_NAME          String,
        S_ADDRESS       String,
        S_CITY          LowCardinality(String),
        S_NATION        LowCardinality(String),
        S_REGION        LowCardinality(String),
        S_PHONE         String
)
ENGINE = MergeTree ORDER BY S_SUPPKEY;

写入数据

$ clickhouse-client --query "INSERT INTO ssb.customer FORMAT CSV" < customer.tbl
$ clickhouse-client --query "INSERT INTO ssb.part FORMAT CSV" < part.tbl
$ clickhouse-client --query "INSERT INTO ssb.supplier FORMAT CSV" < supplier.tbl
$ clickhouse-client --query "INSERT INTO ssb.lineorder FORMAT CSV" < lineorder.tbl

然后将star schema转换为flat schema

SET max_memory_usage = 20000000000, allow_experimental_multiple_joins_emulation = 1;

CREATE TABLE lineorder_flat
ENGINE = MergeTree
PARTITION BY toYear(LO_ORDERDATE)
ORDER BY (LO_ORDERDATE, LO_ORDERKEY) AS
SELECT l.*, c.*, s.*, p.*
FROM lineorder l
 ANY INNER JOIN customer c ON (c.C_CUSTKEY = l.LO_CUSTKEY)
 ANY INNER JOIN supplier s ON (s.S_SUPPKEY = l.LO_SUPPKEY)
 ANY INNER JOIN part p ON  (p.P_PARTKEY = l.LO_PARTKEY);

ALTER TABLE lineorder_flat DROP COLUMN C_CUSTKEY, DROP COLUMN S_SUPPKEY, DROP COLUMN P_PARTKEY;

查询语句

Q1.1

SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM lineorder_flat WHERE toYear(LO_ORDERDATE) = 1993 AND LO_DISCOUNT BETWEEN 1 AND 3 AND LO_QUANTITY < 25;

Q1.2

SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM lineorder_flat WHERE toYYYYMM(LO_ORDERDATE) = 199401 AND LO_DISCOUNT BETWEEN 4 AND 6 AND LO_QUANTITY BETWEEN 26 AND 35;

Q1.3

SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue FROM lineorder_flat WHERE toISOWeek(LO_ORDERDATE) = 6 AND toYear(LO_ORDERDATE) = 1994 AND LO_DISCOUNT BETWEEN 5 AND 7 AND LO_QUANTITY BETWEEN 26 AND 35;

Q2.1

SELECT sum(LO_REVENUE), toYear(LO_ORDERDATE) AS year, P_BRAND FROM lineorder_flat WHERE P_CATEGORY = 'MFGR#12' AND S_REGION = 'AMERICA' GROUP BY year, P_BRAND ORDER BY year, P_BRAND;

Q2.2

SELECT sum(LO_REVENUE), toYear(LO_ORDERDATE) AS year, P_BRAND FROM lineorder_flat WHERE P_BRAND BETWEEN 'MFGR#2221' AND 'MFGR#2228' AND S_REGION = 'ASIA' GROUP BY year, P_BRAND ORDER BY year, P_BRAND;

Q2.3

SELECT sum(LO_REVENUE), toYear(LO_ORDERDATE) AS year, P_BRAND FROM lineorder_flat WHERE P_BRAND = 'MFGR#2239' AND S_REGION = 'EUROPE' GROUP BY year, P_BRAND ORDER BY year, P_BRAND;

Q3.1

SELECT C_NATION, S_NATION, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM lineorder_flat WHERE C_REGION = 'ASIA' AND S_REGION = 'ASIA' AND year >= 1992 AND year <= 1997 GROUP BY C_NATION, S_NATION, year ORDER BY year asc, revenue desc;

Q3.2

SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM lineorder_flat WHERE C_NATION = 'UNITED STATES' AND S_NATION = 'UNITED STATES' AND year >= 1992 AND year <= 1997 GROUP BY C_CITY, S_CITY, year ORDER BY year asc, revenue desc;

Q3.3

SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM lineorder_flat WHERE (C_CITY = 'UNITED KI1' OR C_CITY = 'UNITED KI5') AND (S_CITY = 'UNITED KI1' OR S_CITY = 'UNITED KI5') AND year >= 1992 AND year <= 1997 GROUP BY C_CITY, S_CITY, year ORDER BY year asc, revenue desc;

Q3.4

SELECT C_CITY, S_CITY, toYear(LO_ORDERDATE) AS year, sum(LO_REVENUE) AS revenue FROM lineorder_flat WHERE (C_CITY = 'UNITED KI1' OR C_CITY = 'UNITED KI5') AND (S_CITY = 'UNITED KI1' OR S_CITY = 'UNITED KI5') AND toYYYYMM(LO_ORDERDATE) = '199712' GROUP BY C_CITY, S_CITY, year ORDER BY year asc, revenue desc;

Q4.1

SELECT toYear(LO_ORDERDATE) AS year, C_NATION, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM lineorder_flat WHERE C_REGION = 'AMERICA' AND S_REGION = 'AMERICA' AND (P_MFGR = 'MFGR#1' OR P_MFGR = 'MFGR#2') GROUP BY year, C_NATION ORDER BY year, C_NATION;

Q4.2

SELECT toYear(LO_ORDERDATE) AS year, S_NATION, P_CATEGORY, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM lineorder_flat WHERE C_REGION = 'AMERICA' AND S_REGION = 'AMERICA' AND (year = 1997 OR year = 1998) AND (P_MFGR = 'MFGR#1' OR P_MFGR = 'MFGR#2') GROUP BY year, S_NATION, P_CATEGORY ORDER BY year, S_NATION, P_CATEGORY;

Q4.3

SELECT toYear(LO_ORDERDATE) AS year, S_CITY, P_BRAND, sum(LO_REVENUE - LO_SUPPLYCOST) AS profit FROM lineorder_flat WHERE S_NATION = 'UNITED STATES' AND (year = 1997 OR year = 1998) AND P_CATEGORY = 'MFGR#14' GROUP BY year, S_CITY, P_BRAND ORDER BY year, S_CITY, P_BRAND;

部署过程参考于官方文档:https://clickhouse.tech/docs/en/getting-started/example-datasets/star-schema

TPC-DS

关于clickhouse在TPC-DS上的局限 https://github.com/Altinity/tpc-ds


Comments

Content